高中所有数学公式推导过程,高一必修三四数学公式总结归纳

高中所有数学公式推导过程,高一必修三四数学公式总结归纳

高中全部数学公式推导过程?

正弦、余弦的和差化积公式  指高中数学三角函数部分的一组恒等式 。  

sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]   

sinα一sinβ=2cos[(α+β)/2]·sin[(α-β)/2]  

 cos α+cos阝=2cos[(α+β)/2]·cos[(α-β)/2]   cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】    以上四组公式可以由积化和差公式推导得到证明过程  法1 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程   因为   sin(α+β)=sin αcos β+cos αsin β,   sin(α-β)=sin αcos β-cos αsin β,   以上两式的左右两边分别相加,得   sin(α+β)+sin(α-β)=2sin αcos β,   设 α+β=θ,α-β=φ   既然如此那,   α=(θ+φ)/2, β=(θ-φ)/2   把α,β的值代入,即得   sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2]。

如题,要公式的推导过程。我曾不止一次的看到过,高中数学不仅要记住公式,更加重要的是要清楚它是咋推导出来的,在推导公式的途中就可以发现全部公式中的内在联系,以此把高中数学连接成了一个互联网,而不是各自孤立存在的。

高一必修三四数学公式总结?

必修四数学公式重要内容及核心考点

高一数学必修4重点公式汇总

一)两角和差公式 (写的都要记)

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA ?

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

二)用以上公式可推出下方罗列出来的二倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

(上面这个余弦的非常的重要)

sin2A=2sinA_osA

三)半角的只要能记住这个:

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

四)用二倍角中的余弦可推出降幂公式

(sinA)^2=(1-cos2A)/2

(cosA)^2=(1+cos2A)/2

五)用以上降幂公式可推出以下经常会用到的化简公式

1-cosA=sin^(A/2)_

1-sinA=cos^(A/2)_

a(1)=a,a(n)为公差为r的等差数列

通项公式:

a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.

可用归纳法证明。

n=1时,a(1)=a+(1-1)r=a。成立。

假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r

则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.

通项公式也成立。

因为这个原因,由归纳法知,等差数列的通项公式是正确的。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+(a+r)+...+[a+(n-1)r]

=na+r[1+2+...+(n-1)]

=na+n(n-1)r/2

同样,可用归纳法证明求和公式。

a(1)=a,a(n)为公比为r(r不等于0)的等比数列

通项公式:

a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).

可用归纳法证明等比数列的通项公式。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+ar+...+ar^(n-1)

=a[1+r+...+r^(n-1)]

r不等于1时,

S(n)=a[1-r^n]/[1-r]

r=1时,

S(n)=na.

同样,可用归纳法证明求和公式

数学备考资料及辅导课程

数学免费资料+培训课程

©下载资源版权归作者所有;本站所有资源均来源于网络,仅供学习使用,请支持正版!

数学培训班名师辅导课程

考试培训视频课程
考试培训视频课程

以上就是本文高中所有数学公式推导过程,高一必修三四数学公式总结归纳的全部内容,关注中宇考试网了解更多关于文高中所有数学公式推导过程,高一必修三四数学公式总结归纳和数学的相关信息。

本文链接:https://edu.china-share.com/news/24443.html

发布于:中宇考试网(https://edu.china-share.com)>>> 数学栏目

投稿人:网友投稿

说明:因政策和内容的变化,上文内容可供参考,最终以官方公告内容为准!

声明:该文观点仅代表作者本人,中宇考试网系信息发布平台,仅提供信息存储空间服务。对内容有建议或侵权投诉请联系邮箱:sdf2223@foxmail.com

数学热门资讯推荐